首页> 外文OA文献 >Compression-Based Regularization with an Application to Multi-Task Learning
【2h】

Compression-Based Regularization with an Application to Multi-Task Learning

机译:基于压缩的正则化在多任务中的应用   学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper investigates, from information theoretic grounds, a learningproblem based on the principle that any regularity in a given dataset can beexploited to extract compact features from data, i.e., using fewer bits thanneeded to fully describe the data itself, in order to build meaningfulrepresentations of a relevant content (multiple labels). We begin byintroducing the noisy lossy source coding paradigm with the log-loss fidelitycriterion which provides the fundamental tradeoffs between the\emph{cross-entropy loss} (average risk) and the information rate of thefeatures (model complexity). Our approach allows an information theoreticformulation of the \emph{multi-task learning} (MTL) problem which is asupervised learning framework in which the prediction models for severalrelated tasks are learned jointly from common representations to achieve bettergeneralization performance. Then, we present an iterative algorithm forcomputing the optimal tradeoffs and its global convergence is proven providedthat some conditions hold. An important property of this algorithm is that itprovides a natural safeguard against overfitting, because it minimizes theaverage risk taking into account a penalization induced by the modelcomplexity. Remarkably, empirical results illustrate that there exists anoptimal information rate minimizing the \emph{excess risk} which depends on thenature and the amount of available training data. An application tohierarchical text categorization is also investigated, extending previousworks.
机译:本文从信息理论的角度研究了一个学习问题,该问题基于以下原理:可以利用给定数据集中的任何规律性从数据中提取紧凑特征,即使用比完全描述数据本身所需的位数更少的位数,以建立有意义的表示。相关内容(多个标签)。我们首先通过对数损失保真度准则引入噪声有损源编码范例,该准则提供了\ emph {交叉熵损失}(平均风险)和特征信息率(模型复杂度)之间的基本折衷。我们的方法允许\ emph {多任务学习}(MTL)问题的信息理论公式化,这是一种有监督的学习框架,在该框架中,可以从通用表示中共同学习几个相关任务的预测模型,以实现更好的泛化性能。然后,我们提出了一种计算最优权衡的迭代算法,并在满足某些条件的情况下证明了其全局收敛性。该算法的一个重要特性是它提供了防止过度拟合的自然保护措施,因为考虑到模型复杂性导致的损失,它将平均风险降到最低。值得注意的是,经验结果表明,存在一个最佳信息率,该信息率使\ emph {过高风险}最小,这取决于当时的情况和可用训练数据的数量。还研究了分层文本分类的应用程序,扩展了以前的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号